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INVERSE FEL PROTON ACCELERATOR VIA PERIODICALLY MODULATED 

CRYSTAL STRUCTURE 

S.A. Bogacz 

Accelerator Physics Department, 
Fermi National Accelerator Laboratory* 

P.O. Box 500, Batavia, IL 60510 

March 1992 

Presented study explores the idea of using a visible light wave to accelerate relativistic protons via 

the inverse FEL mechanism. Here, a strain modulated crystal structure - the superlattice, plays the role of a 

microscopic undulator providing very strong pondemmotive coupling between the beam and the light wave. 

Purely classical treatnxnt of relativistic protons channeling through a superlattice is performed in a self- 

consistent fashion involving the Maxwell wave equation for the accelerating electromagnetic field and the 

relativistic Boltzmannn equation for the protons. It yields the accelerating efficiency in terms of the negative 

gain coefficient for the amplitude of the electromagnetic wave - the rate the energy is extracted from the 

light by the beam. Presented analytic formalism allows one to find the acceleration rate in a simple closed 

form. which is further evaluated for a model beam - optical cavity system to verify feasibility of our 

scheme. 

*Operated by the Universities Research Association, Inc.. under a contract with the US. Department of Energy 



1. INTRODUCTION 

Here we suggest using a solid state superlattice as an undulator in conjunction with an optical 

pumping cavity to accelerate relativistic protons. Heavier particles (vs electrons or positrons) are more ap- 

propriate, because they are not susceptible to emitting photons via spontaneous synchrotmn radiation and 

therefore they are more likely to absorb energy from an electromagnetic wave. The idea of the inverse FEL 

mechanism employed to accelerate charged particles’ is not new by itself: what we propose here is to re- 

place a conventional magnetic undulator with a microscopically modulated crystal swuctwe - the superlat- 

tice. which assures much stronger ponderomotive coupling to the pumping wave. Furthermore. its micro- 

scopic undulator periodicity shifts the wavelength of the pumping optical mode to much shorter waves - it 

opens a possibility of accelerating the beam with high power laser in the visible region. 

Such periodic crystal structures occur naturally in several alloy systems or may be prepared artiti- 

cially with vapor deposition techniques’. We consider a superlattice with an accompanying strain modula- 

tion, which is a natural consequence of the two constitaents having slightly different lattice spacings (eg. 

Si-Ge superlattice). 

The main idea of using a modulated crystal stmchue as an undulator is illustrated schematically in 

Figure 1. A beam of relativistic particles while channeling through the crystal follows a well detined trajec- 

tory. Presented treatment will be limited to protons but could be modified for negative ions eg. H-, as well 

(providing that the shipping probability for H-is not too high). Figure 1 depicts channeling paths (which 

for protons would lie in low density regions of the crystal and conversely for H-). There are two distinct 

channeling directions: parallel to the superlattice growth direction and also at a 45aangle to this direction. 

The latter are what interest us here because, as one can see from Figure 1, the center of Ihe channeling axis 

is nu&&ted bv the voenodrarv. This is Ihe essence of the solid state undulator: i.e., the 

particles are periodically accelerated perpendicular to their flight path as they traverse the channel. The 
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undulator wavelengths typically fall in the range 50-500 A. far shorter than those of any macroscopic 

undulator. Furthermore. the electrostatic crystal-fields involve the line averaged nuclear field and can be two 

or more orders of magnitude larger than the equivalent fields of macroscopic magnetic undulators (translated 

into the corresponding electric field in the rest-frame of a relativistic particle). Both of these factors hold the 

promise of greatly enhanced coupling between the beam and the pumping electromagnetic wave. 
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2. CHANNELING OF RELATIVISTIC PROTONS TROUGH A STRAIN-MODULATED 

SUPERLATXE 

Following the spirit of the Vlasov equation3 we will describe a high intensity proton beam in 

terms of a classical distribution function, f(p,r,t), governed by the relativistic Bokzmann equation. The 

transverse dynamics of relativistic protons propagating in a strain-modulated superlattice is modeled by a 

harmonic crystal field potential4 and leads to generation of a transverse current. This couples the Vlasov 

equation to the Maxwell wave equation. Therefore., presented problem reduces to a self consistent solution 

of the Vlasov and the wave equations, which will be treated in detail in the next few sections. Finally, a 

closed analytic expression for the amplitude-gain/loss coefficient will be obtained in the linear approxima- 

tion for appropriate regime with respect to the cavity length and the momentum spread in the incident 

bcanl. 

We start with a relativistic Lagmngian describing motion of a proton in an arbitrary electromag- 

netic field (A, +) 

L=-mc2~ + ;v*A- eQ. 

Here A is a vector potential of an electromagnetic field and $ is a phenomenological harmonic crystal-field 

potential, which describes both transverse focusing of the beam and longitudinal modulation of the mini- 

mum of the harmonic potential well. More realistic description of the planar channeling is usually given in 

terms of the Moliere potent&, which accounts for averaged electric field of ions and electron cloud around 

each lattice site. For the purpose of oar model calculation a harmonic approximation to the focusing po- 

tential is quite sufficient and it can be written as follows 

$ = +)+ ;I$ (x - x1 cos gz)Z, (2.2) 



where g = 271/L is the strain modulation periodicity and x,,#,.@~ are parameters of the potential. In order to 

avoid unnecessary complexity we choose to work directly in the laboratory reference frame, and use a space- 

time description of the problem. 

We introduce the canonical momentum of a particle 

and write the Hamiltonian as 

with 

P”+,,va+;Aa 
xa 

H=pU?-L=myc’+e$, 

Y(P) = + +&(P+ )‘. 

(2.3) 

(2.4) 

(2.5) 

i=+&(p++ (2.6) 

fia=-$$=--&(p~-~A~)$$-e$. (2.7) 

A beam of protons moving along the z axis can be described in terms of a distribution function, f(p,x,t); 

this distribution function obeys the relativistic Vlasov equation 
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“+L(pa+,‘)$ 
at my (2.8) 

+[&(pB-:AB)$$ - e$$]$=I@D). 

Here I@‘) is a collision integral accounting for various incoherent proton scattering processes. This equa- 

tie” will be treated iteratively and only linear terms in the A-field will be retained. In the 0-th order solution 

A = 0, and the correspondmg distribution function f = r”’ is obtained (in the absence of collisions) from the 

so1”ti0” of 

aP fi ~$0) i!!k?!!c 
x+myp-eaxOl +“-O. (2.9) 

A class of solutions. &“, describing a beam of protons with a sharply peaked initial momentum dishibu- 

tion, A@, - p,J, p, = 0 can be easily constmcted by solving the following set of equations 

ix=-e$ (x- x1 cm gz), 

Keeping only linear tams in x1, the soluticm has the following form 

x=h cosgz, 

(2.10) 

(2.11) 

(2.12) 

i),=o. (2.13) 
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U=&- (2.14) 

It follows from Eq~(2.12 j(2.14) that the initial distribution of canonical momenta in the z direction 

is conserved daring the channeling, while the particles follow the trajectory defined by x@)(z) = x. This im- 

plies that particles which enter the crystal with x coordinates off the channel plane lose energy via scattering 

mechanisms and asymptotically approach the channel plane6. Therefore, the solution, I@‘. can be factorized 

as follows 

P = no 8(x - X(0’) s@, - p ;‘)A@, - pJ (2.15) 

p(Q =p - = ad4 - 
I la.4 

-p .p gxl 
I 1-u 

2 sin gz 

Here A@, - pJ describes an initial momentum distribution and no is a concentration of particles per unit 

area of the channeling plane. The distribution function. fcl’ , generated by the A-field obeys the following 

Ii”emized vlasov equation 

at’) P. at”) at’o’ 
~+,x-&:AG- 

P, a+” 
+mr3F 

+ ep. JAX 36” ae ar(‘) _ P 
*cy ih apx-eaxapx-7 

(2.17) 

Here we have used a relaxation time approximation for the collision integral modelling it by the relaxation 

time, ‘T. We have also assumed that only the transverse component of the A-field is present and Ax= A(z.t). 

We seek a solution, 6”. in the following form 
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6’) = no&(x - x0’) S(px - p ‘z’ , h(z. p,,‘) , (2.18) 

where h describes bunching of particles due to the presence of the A-field. Substituting Eqs.(2.15)-(2.16) 

and (2.18) into Eq(2.17) leads to the following kinetic equation for h 

ah 
at+ 

&~+~~~~~singz=-). (2.19) 

The inhomogeneous term in the above equation plays the role of a driving force representing acceleration of 

the particles by the ponderomotive force due to the transverse motion (induced by the crystal field) in the 

presence of the A-field The tmnsvelre current induced by the fields is given by 

jx= e jdpx jdpz vx 6’) . 
-ca -m 

The current in a single channel can be written to linear accuracy in A as follows: 

jx = - no e S(x - P) 
s dpz h(z,pz,t) & 3 sin gz. 

-co 

(2.W 

(2.21) 

(2.22) 

The net transverse current in the crystal is given by a sum of discrete planar currents concentrated at 

each channeling site of the x direction. According to the Appendix, an infinite army of equally spaced car- 

rents is equivalent to a smoothed uniform current distribution given by Eq.(2.22) but without the factor s(x 

- x(O)) and with an associated proton density redefined as n = nda, where a is the spacing between adjacent 
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channels. A more general situation where the crystal field potential in each channel is shifted in phase is 

also discussed in the Appendix. The resulting transverse current couples Eq.(2.19) to the following wave 

equatio” 

($- $$)A=% Jdp, hss singz, 
-co 

resulting in a closed system of equations for h and A. Here the A-field can be identified as a sum of the 

macroscopic driving field and a self consistent electromagnetic field propagating in the crystal structure. We 

will not attempt to solve this system of partial-differential-integral equations exactly. For the purpose of 

calculating a linear amplitud+Ioss/gain coefficient, it is sufficient to confine the solution for the A-field to 

only the first step of the iteration procedure. The procedure is analogous to the Born approximation in scat- 

tering theory7. We start with a single plane wave solution of arbitrary 61 and k propagating in free space 

along the z axis in both directions and use it as a 0-th order iteration step 

A(o)=A e-iux*ilz 
* 0 

Patting A = A;) m Eq.(2.19), one can solve it analytically for h = h’l’by constructing a Green’s 

function with the appropriate boundary conditions built in it. We consider a finite crystal undulator extend- 

ing along the z. axis from 0 to L. The bunching function, h’:’ , corresponding to the right propagating ini- 

tial wave, At:’ , vanishes outside the undulator and it is assumed to be continuous at the entry point, z = 0, 

of the A’:’ wave. Similarly for the left going solution, A’!’ , the analogous initial condition is satisfied at 

its entry point, z = L. The complete set of boundary conditions can be written in the following compact no- 

tation 
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z+=o, z-=L (2.m 

Finally, the solution of Eq.(2.19) with the above boundary condition (2.25)-(2.26) is expressed in the fol- 

lowing integral form 

z 

h;‘(z) = 
5 

dzq Hy(zf) e ib- ~‘hv@, , 

4 

(2.27) 

d:‘(z) = f &A:‘(z) sin gz Q $ 
z 

cw 

where in what follows, collisions are modeled by writing o -a o +i/z. Substituting the above solution for 

h(i) in Eq(2.23) reduces it to an inhomogeneous Helmholtz equation for A(:‘: 

($ - $ $ )A’:‘(d= J,(z) , (2.30) 

where the explicit formula for J* can be obtained from Eq.(2.27) and Eqs.(2.27)-(2.29). To solve Eq.(2.30) 

one may integrate it with the following lxxmdmy conditions at the entry points for the right and left propa- 

gating solutions 

At&) = A’:‘(z+) . (2.31) 
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a (o) 
ZA 

J A”’ 
* I,=%= ;h * I,,y’ 

The solution can be written explicitly in terms of the Green’s function for the Helmholtz equation 

“7 

s 

me - 1’1 
A’:‘(z) = A:‘(z) + dz’ e 2Li J,(2) , k = w/c , 

Z* 

(2.32) 

(2.33) 

J*(z) = f ik [dpz F(pJ sin gz fdz’ sin gz’ Atl’(z’) e i(z-s’)mP’pz , (2.34) 
-m =* 

with the kernel Ff&) defmed as follows 

F(p)=4mQZL aA I my JP, 
(2.35) 

Carrying out the integration in Eq.(2.34) leads to the required solutions describing the evolution of the right 

and left pmpagating waves. To introduce a single pass loss/gain coefficient one should examine the result- 

ing amplitudes after passing through the undulator of length L, i.e., we have to evaluate At:‘@ = zJ by us- 

ing Eq.(2.34). On the other hand, one can model the effect of coupling by adding a small complex part iti 

= a* + ip’ to the k-vector; here a is a gain/loss coefficient and p describes a small shift in the phase veloc- 

ity of the optical mode. This could be summarized by the following expression 

At’)(z) = A e -ica*.h * it&-Q 
* 0 (2.36) 

Expanding to linear order in Icf we obtain 
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A(:l(z)= AT’(z) [1 k iK*(z - ZJ] . (2.37) 

The above expression evaluated at z = z* simplifies to 

At$Q = Ati’ (1 f iK*L ) (2.38) 

Further comparison of Fqs.(2.38) and (2.34) (with z = zJ allows one to identify two complex loss/gain co- 

efficients 6. as follows 

L z’ 
K+ = & J dpz F(pz) 1 dzv e - w sin gz8 j dzt~ sin gz~r e a’ - O-wk + ikz” (2.39) 

-cc 0 0 

L L 

1 K- = z j dpz F(pz) I dzf e - *r’ sin gzm j dzss sin gzam e i(z’ - OvW+ ikz” (2.40) 
-co 0 2 

Apart from a simple integration over z’ and z”, we have found the complex coefficient, ti. for 

waves propagating parallel and antiparallel to the particle beam. The imaginary part of ti describes either 

spontawous amplification or degradation (depending on its sign) of the optical mode. In the next section, 

the above integrations will be carried out explicitly and the linear gain/loss coefticients will Lx. calculated in 

a closed form. 
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3. LINEAR LOSS/GAIN COEFFICIENT - ACCELERATION RATE 

On carrying out the two spatial integrations in Eqs.(2.39) and (2.40). the expressions for the com- 

plex gain, K*, reduce to 

L lc+ = 16 j-& F(PJ { $ [N(P+) - NW) - N(2g) - N(O)] 
-ca 

(3.1) 

+ $ [NW) - WC) + N(O) - NC- WI 

-e - mL -+ [N(v-) - N(v+) + N(2k + 2g) - N(- 2k)] 

-e -,“$ [N(V) - N(v+) + N(2k) - N(2k - 2g)]} 

m 

K- = 2 [dp, F(pz) { 5 [N(2g) - N(0) - N(2g - 2k) + N(- 2k)] (3.2) 
-ca 

- $ [N(O) - N(- 2g) - N(- 2k) + N(-2k - 2g)] 

-e -‘v-L + [N(v+) - N(V) - NQt+) + N(v-)] 

+e-iv+L 
+ [NV+) - NW-1 - W+) + NW)] } 3 

p*=myo/pz-k*g , v*=myw/pz+k+g (3.3) 
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e sin(xL/2) 
NW = L/2 xLn (3.4) 

Using OUT definition of r$ the linear gain coefficient is given by a* = - Im K* we observe that the function 

r(x) q I* Yp=(MzL&%) (3.5) 

is the characteristic form occurring in diffraction theory, with the principal maximum at x = 0. The remain- 

ing terms in curly brackets in Eqs.(3.1) and (3.2) do IK)t have this feature and their conbibution can be ne- 

glected relative to the terms containing Q. Therefore, E4s.o.l) and (3.2) simplify to 

a+=$ ;pzF(pzHW+)+r(w71 

-co 

0.6) 

CC=-+ ;p,F(pJ[T(v+)+r(v-)] 
-co 

(3.7) 

Since the quantities g, k and p, are positive, for the chosen geometry. only p- and v- pass through zero. 

Therefore, the remaining terms, r&t+) and r(v+) can be neglected when evaluated far from the maximum 

compared to the r(x) = 1, (x = 0) term. Using the above argument Eqs.(3.6) and (3.7) become 

,+=a” 
s 

dpzQz -$ ‘$ LIW) 
I 

(3.8) 
-ca 
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.-z-f” 
s 

dpzQ2 5 ‘=& LUV-) . 
z -ca 

(3.9) 

where the explicit form of the kernel F is used. 

Imposing resonant condition. v- = 0, in Eq.(3.9) fixes the wavevector of the optical mode as follows 

g = mykc/pz + k (3.10) 

p,=myPc. (3.11) 

Assuming the extreme relativistic limit, p + 1, for the proton beam yields the following resonance condi- 

tion 

X=2(. (3.12) 

One can summarize the above condition by the following statement: pumping the beam with the 

electromagnetic wave of lwice the e would result in the maximum rate of energy extraction 

from the wave, given here by a-, which is the essence of the presented accelerating scheme. 

One can notice in passing, that a+ corresponds to the Iasing process, when the forward propagating 

wave is being ampliied by the energy drawn from the beam (the FEL effect). The corresponding resonant 

condition is given by p- = 0, which yields a well known scaling relation between the undulator period and 

the amplified wavelength 

I 
h=p (3.13) 
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From now on. we are interested only in the inverse FEL situation, therefore we will simplify further nota- 

tion by putting: u I & and v - v-. 

One can notice that, apart from a slowly varying function F, the remaining functions occurring in 

the integmnd in Eq.(3.9), namely, A and r are sharply peaked functions of momentum characterized by the 

respective widths (:)* and ($),. Hem the width of the initial momentum distribution, A, was intro- 

dwdinastandardway* 

(?I= [(p3$JR 

Similarly the width of r is governed by the following simple ratio 

(3.14) 

(3.15) 

Now one can compare relative sharpness of both functions; A and I’. Typical value of the relative momen- 

tom spread is of the order of l@. Assuming superlattice modulation of SMIA and crystal length of 5 cm al- 

lows one to evaluate the width of r. Both characteristic widths can be summarized as follows 

(~),40-4, ($),=lO? (3.16) 

The integration in Eq.(3.9) is carried out assuming that the sharper function, namely r, is approx- 

imated by the &function according to the following asymptotic relationship 

yif $ r(v) = 6(v) . (3.17) 

Applying resonant condition, described by Eqs.(3.10)-(3.12). and assuming p + 1 reduces the gain/loss co- 

efficient to the following simple expression 
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a=-; “$ yl($2 

The above final result will serve as a starting point for funher feasibility discussion. 

(3.18) 
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4. THREE WAVE MIXING-PHYSICAL PICTURE 

According to the presented model calculation spontaneous bunching of the proton beam channeling 

through a superlattice and interacting with the electromagnetic wave results in energy flow from the wave to 

the beam. This particular kind of particle density fluctuation, h, has the form of a propagating plane wave 

of the same frequency, o , as the emitted electromagnetic wave. The phase velocity of the moving bunch 

matches the velocity of protons in the beam. Therefore, the quantity ymw’pz I k represents the wavevector 

of the propagating particle density bunch. Keeping in mind that the periodicity of the undulator represents a 

static wave with a wavevector g. and that k is the wavevector of the electromagnetic wave, we can analyze 

our results in the language of three wave mixing. 

One can notice, that the resonant denominators appearing in final expressions for the linear 

gain/loss coefticients. Eq.(3.3), i.e., B* = myce/p, - k k g (forward propagating wave) and v* = m’yu/p, + 

k + g @ackward propagating wave), can b-c identified with the frequency - wavevector conservation condi- 

tions for a three wave mixing process. From this point of view, the FEL or the inverse FEL reduce to an 

Umklapp processs involving: 1) the propagating “bunch” in the proton density, 2) the pumping electro- 

magnetic wave and 3) the static periodic field of the undulator. Matching of frequencies for the two 

“dynamic modes” assures “energy” conservation. Funhermore “momentum” conservation of all three modes 

(static and dynamic) yields the p-= 0 (FEL), Y- = 0 (inverse FEL) conditions. The last condition is equiv- 

alent to a momentum “recoil”, g, between the particle density “bunch” and the electromagnetic wave, i.e., 

an Umklapp process. One can see immediately that the resonant denominator, v-, is responsible for the 

negative gain (deamplification of the backward propagating wave), where a four momentum (0, g) is trans- 

ferred from the backward propagating wave to the forward moving proton bunch. 
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5. FEASIBILITY ASSESSMENT 

In this section we will discuss the feasibility of the proposed scheme by considering (110) planar 

channeling in a strain modulated Si crystalg. We write the undulator period as f= Nd, where d = 1.92 A is 

the spacing between successive lattice planes and N is the number of such planes. The strain modulation, of 

course, requires a second component, such as Ge; however, we will use the parameters of Si for 

convenience. 

One can identify the magnetic field of the undulator, which would be equivalent to electric field of the 

strain modulated crystal lattice (i.e., would result in the same transverse velocity of the channeling parti- 

cles). The equivalence is given by: 

B = b,x, (5.1) 

According to Ref. 9, the harmonic part of the crystal field potential for (110) planar channeling in Si is e@, 

= 36 eV A-‘. Assuming a strain modulation amplitude of 0.1 A leads to an enormous magnetic field of B = 

1.2 x 106 Gauss. 

Relativistic particles while channeling along the path undergo transverse harmonic oscillations 

from the crystal field potential, an analog of the Matron oscillations, with the characteristic frequency oa = 

&&. One can see from Eq.(2.29) that if the angular velocity of a particle traversing the strain modulated 

path, w = 21cvL/I, approaches w,&(Doppler shifted betatron frequency), the undulator parameter, Q, has 

a resonance (U + 1). which would enormously enhance the gain/loss coefficient. However, the excessive 

growth of the undulator parameter would soon result in a rapid dechanneling of the particles. One can see 

this easily if Q is rewritten in the following form 

Q=” li 
c “II (5.2) 
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where vI .v,, are transverse and longitudinal components of the particle velocity, respectively. 

Now, the following simple physical criterion allows one to estimate the maximum value of Q. 

Jkchanneling will occur if the transverse kinetic energy of the particle exceeds the binding energy of the 

harmonic potential (a particle leaves the channel). If the maximum transverse velocity of a channeling parti- 

cle. is v,and a is the distance between adjacent channels (for (110) channeling in Si a = 5 A) , the above 

condition can be written as follows: 

v,z2 Z(;)“. (5.3) 

The equality sign in Eq(5.3) along with Eq.(5.2) fix the maximum allowed value of the undulatorparame- 

Qrn”“=E t d- E!!r 
d@F’ 

The above expression can be evaluated for relativistic protons channeling through our model superlattice as 

-x Q = 7.5 x10-” CnF g’R . (5.5) 

Now, one can evaluate Eq.(3.18) assuming only one proton - by assigning n to be an inverse area of the 

channeling plane per one particle for typical values of the beam concentration, n = lOl6 cm-‘. This way a 

describes the rate of optical amplitude depletion per one particle - the acceleration rate. Assuming y of 100, 

r=5OOAand(+)*= + 10 yields the following value of the acceleration rate 

a = 2.65 x lo-2 cm-’ (5.6) 
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The nominal acceleration efficiency in units of eV/cm will. obviously, depend on the energy density of the 

actual optical cavity, which is left out for farther discussion elsewhere. 
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6. CONCLUSIONS 

The final acceleration rate evaluated numerically in Eq.(5.6) seems to be quite substantial. Practical 

feasibility of the presented scheme rests on availability of high density optical mode pumped by a high 

power laser. Furthermore, there is some radiiion damage and thermal heating of the crystal associated with 

pmton channeling. One can apply the beam to a rapidly spinning cry~tal’~. so that the average power den- 

sity could be reduced to alleviate this problem. 
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APPENDIX 

We will generalize the treatment given in Section 2. Eqs.(2.19)-(2.24). to a situation depicted 

schematically in Figure 2. Now there is a constant phase shift, p, between the crystal lield of two neighbor- 

ing channels. In this case the kinetic equation, Eq.(2.19), can be modified as follows 

($+ ~~$)h’(z,t)=M~ sin(gz+jp) . @.I) 

Here j is the index of the channel, which discretizes the variable x as follows: x = aj. Furthermore we denote 

Assuming an x-dependent A-field of the form 

A(x.z,t) = A(z) e - iw. + ‘lix , 

we seek a solution for h in the following form 

d(z,t) = h’(z) e -iol 

Substituting the above expression in Eq.(A.l) one can rewrite it as follows 

G4.3) 

64.4) 

W.5) 

(vz$- iu)&) = $ (eigZ+i(k,n+~)j_e-igz+i(k,a-~)j )a” 
a32 

(A,6) 

Therefore the j-dependence of our solution can be written explicitly as 
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d(.,,) = h,(z) e %+ p)j + h-(Z) e iosip- p)j , W-0 

where the functions h+and h-are governed by the following pair of equations (equivalent to lXq(A.2) 

(v.$- ite)h+(z)=geige$$ , (‘4.8) 

(V,$ io)h&)=-$e-isz& a2 (A.9) 

The net transverse current in the crystal, induced by h+and h-, couples to the A-field through the following 

wave equation 

> 
A(x,z) = 4nne jdp, v,Q c 6(x - ja) sin(gz - jp) h’(z) , (A.lO) 

-ca j 

k*= kx*+ k,‘= (w/c)* . 

Substituting according to Eq.(A.3) and representing the S-function as an integral form, S(x) = j dkx e ““, 

one can rewrite Eq.(A.5) as follows 

($ + k: )A(z) = 4mOFpz vz Q & 

.(h_e-i~z-h+ei~z-h_e-i8z-iOplr)~-h+eig.+i(2Pls)~ ) 

(A.1 1) 

Obviously for a channeling particle x << a and therefore ei(2p’a)x z 1; Eq.(A.7) then becomes 
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(-$ + k:) A(z) = 4m, Jo” -1 vz Q i (h-+ h+) sine 

Similarly from Eq.(A.8) one obtains 

(v,$- iu) [ h+(z) + h-(z)] = M 2 sin gz 

(A.12) 

(A.13) 

One can see immediately that redefining; h+ + h- = h, in Eqs.(A.‘I) and (A.8) reduces them to the initial pair 

of equations used previously, namely Eqs.(2.19) and (2.22). Therefore, our case (x << a) is equivalent to the 

one heated before in Section 2 and the same final expression for the linear gain/loss holds even in case of 

finite phase shift in the crystal potential between neighboring channels. 
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FIGURE CAPTIONS 

Figure 1 Center of the channeling trajectory for a [I IO] direction in a strain-modulated superlattice: 

a) for protons (located in a low density region), 

b) for H- (located in a high density region). 

The [IO01 channeling direction yields no undulator effect. 

Figore 2 An infinite array of parallel channels in a strain-modulated superlattice. The phase shift in the 

crystal field potential between two neighboring channels, p. is given by p = y. 
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